Radical Of A Lie Algebra
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
Lie theory In mathematics, the mathematician Sophus Lie ( ) initiated lines of study involving integration of differential equations, transformation groups, and contact of spheres that have come to be called Lie theory. For instance, the latter subject is L ...
, the radical of a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
\mathfrak is the largest solvable
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
of \mathfrak.. The radical, denoted by (\mathfrak), fits into the exact sequence :0 \to (\mathfrak) \to \mathfrak g \to \mathfrak/(\mathfrak) \to 0. where \mathfrak/(\mathfrak) is
semisimple In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
. When the ground field has characteristic zero and \mathfrak g has finite dimension,
Levi's theorem In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real Lie algebra ''g'' is the semidirect product of a solvable ideal and a semi ...
states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of \mathfrak g that is isomorphic to the semisimple quotient \mathfrak/(\mathfrak) via the restriction of the quotient map \mathfrak g \to \mathfrak/(\mathfrak). A similar notion is a
Borel subalgebra In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra \mathfrak is a maximal solvable subalgebra. The notion is named after Armand Borel. If the Lie algebra \mathfrak is the Lie algebra of a complex Lie group ...
, which is a (not necessarily unique) maximal solvable subalgebra.


Definition

Let k be a field and let \mathfrak be a finite-dimensional
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
over k. There exists a unique maximal solvable ideal, called the ''radical,'' for the following reason. Firstly let \mathfrak and \mathfrak be two solvable ideals of \mathfrak. Then \mathfrak+\mathfrak is again an ideal of \mathfrak, and it is solvable because it is an
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * E ...
of (\mathfrak+\mathfrak)/\mathfrak\simeq\mathfrak/(\mathfrak\cap\mathfrak) by \mathfrak. Now consider the sum of all the solvable ideals of \mathfrak. It is nonempty since \ is a solvable ideal, and it is a solvable ideal by the sum property just derived. Clearly it is the unique maximal solvable ideal.


Related concepts

* A Lie algebra is
semisimple In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
if and only if its radical is 0. * A Lie algebra is reductive if and only if its radical equals its center.


See also

*
Levi decomposition In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional real Lie algebra ''g'' is the semidirect product of a solvable ideal and a semi ...


References

{{reflist Lie algebras